
II Introduction to Topology

Everyone should be familiar with continuous functions and

convergence in metricSpacey ( from Analysis I )
.

We discuss the most

general context in which one can consider these ideas

A. Topological Spaces

let X be any set

a collection of subsets 7 of X is a topology for X it

← empty set

D 0 and X are in T

2) A and B in 7 ⇒ ( An B ) in T

3) if { Abney is a collection of sets in 7

then ¥ Aa is in 7

here J is an index set

e.g .
J = { 1,23 then {Addeo means I A. AS{
E- I

,

"

then {Ada et
means I . - . A

. a ,
A.

"
Ao ,

.  -

-3

note . property 2) ⇒ any finite intersection of sets in 9 isin 7

e.g .

AnBric -

- ( AAB ) n C
-

in T
-
in T

a topological space is a pair ( X
, 9) where X is a set and

7 is atopology on X

elements of 9 are called open sets

examples . { a
. b. 4

T
,

= { X
,

-0
,

Sal
,

Sb }
,

la . 4 )
is nota topology on X



% = { X
,

0
,

la }
,

Sbl
,

la ,
b }

,

la . 4
,

I b. 43

is neta topology on X

% = I X
,

0
,

la )
,

Ibl
,

Sa ,
b ) }

isogon X

to describe interesting topologies we need a new idea

a collection B of subsets of X is called a basis for a topology
on X if

, ) X is aunion of sets in B

2) it U
,

V E B and pe UN
,

then I WEB set
. p e Wo UN

⇒

lemma I :

given a basis B for a topology on X

let JB = { collection of all unions of setsin B }

Then JB is a topology on X

Proof : need to see 7ps satisfies It - 3) in
' def " of topology

1) X is in TB by condition i ) of def 1 of B

0 is in 7ps since the
"

union of no sets in B
"

is 0 C by convention )

2) it A and B are in 7ps then

A  = ¥ Y and B =

Yeo Vp

for Va
. Hp E B

now if p E An B then there is some doe J
, po

E I

Sf
. p E Yo and p Expo ?e

. p E Yeon Ypo

thus by condition 2) of B I Wp E B such that

p E Wp C Udon Vpoc An B



so An B = U Wp
Z  is obvious

p c- An B E is clear with a

moments thought !

3) it { A alder is a collection in
.

JB ,
then

Aa = ¥
,

Ufs for Uf e B

so Yeo Aa = ¥ Vdp is in 7ps

i. 7ps
-

is a topology on ×
#

examples .

1) let IX. d) be a metricspace

recall
,

this means X isa set and

d : Xxx → IR

is a function satisfying
1) d I x. y ) Z O V x. y

EX

2) d I x , y ) = O ⇒ x = y

3) d C x.y ) = d ly ,
x )

4) d ( x , z ) E dcx , y ) tally ,
z )

then Bd = { Brix ) for all r > o and XEX ) is a basis for a

topology on X

here Brix ) = I y EX sit
.

dlx
. y ) er }

let 's check this

D X = ×Ue×Batx
) so X is a union of elements in Bd

→ given Brix , )
, Brix . ) e Bd and a point p

E Br
,

G.) n Brix . )

set E = min { r
,

- dlxi.pl
, rz-dlk.pl }

¥ .

note it ZE Bdp) then
p fr?

a

d ( x
, ,z ) Ed I x

,
,

p ) td I p ,
Z ) x

.

< dlx
, , p ) tr

,
- d Cx , ,p ) = r

,



so 2- E Br
,

Ix ,
)

similarly 2- E Br
,

C xD so

p e Be Ip) C Br
,

txt n Br
.

Cx . )

thus Bd is a basis for a topology on
X

We call the topology Jd induced by Bd the metric topology

on X ( induced by d)

e. g .

X = IR
"

d Cx
. y) -

- ¥2
,

Hi-

Yi )
'

)
"

' where x - Cx
. , . . . , xn )

is the Euclidean metric on IR
"

so d gives IR
"

a metric topology

this
,

of course
,

is the topology studied in calculus lana lysis

also consider n

d
,

IX. y ) = ¥,

I X
,

- y ,
I

and

dz Cx
, y ) = Max { Ix

,

- yd
,  

- . .

,
lxn - yal }

exercise , ) these are metrics on IR
"

2) the topologies Td = Td
,

-
- Jd

,

are the same !

2)
let IX. 7) and I Y

, 7) be two topologicalspaces

set B = { U x V : U E J and V E 9
'

}
Claim . B is a basis for a topology on Xx Y

indeed : I ) Xx Y E B so Xx Y is a union of etfs in B

y
2) if A

,
B E B then I Va

,
VB E T and VA

,
VB E T

'

A such that
A  = Vax VA and B = VB x VB

VA

•  y①
p it p = ix.  y ) E An B then X E VA A UB E I

V
y E Va A Vp E T

'

' #
x

so peah.tt#vDcAnBUp U
A



so B a basis for a topology on X × Y

the topology on Xx Y induced by B is called the product topology

exercise . show that the metric topology on IN is the same as the

product topology on IR x IR where IR is given the metric topology

another way to get a topology is as follows

let IX. 7) be a topological space

A CX a subset

set Jai I An U : U e 9 )

exercise : 7A isa topology on A

7A is called the subspacetopology on A

exercise :

. ) If IX. d) a metric space and Ac X then A has an induced metric da

Show 4d) A
- 7

@a)
T

subspace topology
T

metric topology on A

of metric topology induced by da
on X

2) IR
'

c IR
'

as the x-axis
,

then the subspace topology on IR
'

coming from IR
'

with the metric topology is the

metric topology on IN
'

M2
examples .

1) S
'

= { Cx
, y ) E IN : x 't y

'
= I }

gets a topology from IN #
more generally

5=1 exo, . . . xn ) e R
" "

: ¥ xi = 13

gets a topology from IR
" "



2) Zt c IR gets a topology from IN I What is it ? )
→

integers
, , go , Dcp gets a topology from M

note : open sets in lo , B are unions of

[ o
,

b )
O Lac b L I

la . b)
( a ,

I ]

[ oil ]

so open sets in asubspace topology
need not be open in original space !

4) subspace topologies t product topologies give a topology

on 5×5

and more generally S
"

x Sm

B
.

Limit Points and Sequences

If A  is a subset of a topological space ( X. 7)
,

then p EX is

a him it point of A if for each open set U containing p

we have
A n ( u - Eps ) * 0

the closure of A is the set containing A and all the limit points

of A
,

denote the closure by I

a set C is called closed it it contains all its limit points

lemma 2

1) I is closed Cre .
I = Is

2) A is closed X - A is open

3) a finite union of closed sets is closed

4) any intersection of closed sets is closed



Proof .

2) l ⇒ ) it A is closed then any p
ex - A is not a limit pt

of A
,

so I some open set Up such that

Up n A  = (Up - Ip3) n A -

- 0

that is Up C X - A

so X - A  = pY*aUp is

openly
⇐ it X - A is open ,

then for any pet A we have

p EX - A and ( *-Al - { p) ) n A  = 0

so p is not a limit pt of A

i.e
.

A contains all its limit pts so A is

closed
3) it A

,
B are closed

,
then LX- A )

,
( X - B ) are open

so X - ( AUB) = (X -A) n ( x - B) is open
←

de Morgan 's Law

:
.

A U B is closed

4) almost same as proof of 3)

exercise check D Ett
← natural numbers

a sequence in X is a function p : IN → X

we denote pen by pa and the sequence by Ipn )

a sequence Ipal converges to p if for every open set U containing p

there is some number N such that

Pn E U for all n z N

U
we denote this pn → p P.

.

"

if 'p .



exercise . Show if I X
,

d ) is a metric space then

I pn ) converges to p I in metric topology)
⇒

He > o IN such that dlpa.pk E H n I N

so convergence in metric spaces is just like

from analysis class

lemma 3

let A be aset in a topological space (X. 7)

It 3- a sequence Ipn ) in A and pn → p ,
then p

E At

Proof . if p E A
,

then p E A so done

it p KA
,

then for any open set U containing p ,
since pn -7 p

F N set .

H n Z N
, p n

E U

notep n
EA

, p E A
, so Pne p

i . ( U - Ip ) ) n A F 0 L contains pn.tn z N )

thus p is a limit pt .

of A and so p
E A

L#

Remark Sequences can behave strangely in a general topological space

for example : x ;!%? , .
.

.
.

note : the sequence

Pn = aIt n

converges to a and to b !

What went wrong ?

answer : not enough open sets to

"

distinguish
"

a and b



also recall from analysis you expect that if p is a limit

point of A then -3 a sequence Ipn ) in A such that p n
→ p

but in a general topological space that is not true !

How can we fix these problems ?

a topological space 4,7 ) is called Hausdorff it for every

pair of dishespoints x. y
E X there are

disjointopen sets U and V
' such that x EU and yell

we call a collection N of open sets in X containing p e X

aneighborhood basis for p if for every open set

U containing p ,
there is some set V E N such that p EV CU

we call ( X
,

9) 1st countable if every point

pex
has a

Countable neighborhood basis

lemma 4 :

It I X ,
T ) is a Hausdorff topological space and

{Pnl is a sequence in X that converges to

p and to q ,
then p

-

-

g .

Proof : It p * q ,
then I disjoint open sets V and V such

that p E U and g
EV

since pn -7 p ,
IN such that p n

EU and Pne V
,

V n I N

: . Vnv I 0

this contradicts disjoint ness of U and V
,

so we

must have p = g #

lemma 5.

let ( X , 9) be a 1st countable topological space

If p is a limit point of A
,

then I a sequence
Ipn ) in A such that pn → p



Proof . let lui } ? be a neighborhood basis for p

Set U
,

-
- V

,

Uzi U
,

nv
,

= V
, Nz

i

Un = Un
- in Vn = V

,
n K n . . . mln

:

note : U
,

> Up . . .
- Uno . . .

exercise : Show 143 !
,

is also a neighborhood basis for p

I called nested neighborhood basis )

now it p e A
,

then take prep for all n
,

and we see pn→p

it p EA
,

then note

( Un - Ip ) ) n A  ¥0 It
.

n since p a limit pt of A

so pick pint (Un AA )

note Ipn ) is a sequence in A

Clarin : pn → p

indeed
,

it U is any open set containing p

then since I Un } a nbhd basis for p
I sinceF some N set. Un C U : . Unc U tf n IN nested )

:
. pm EUnc U H n z N

,
that ispm → p #

That .

7 metric spaces are Hausdorff and It countable

2) subspaces of Hausdorff spaces are Hausdorff

"  ' ' 1st countable "  '  ' 1st countable

3) products of Hausdorff spaces are Hausdorff

" " 1st countable "  '  ' 1st countable

Proof : D Hausdorft : if x * y in a metric space ( X. d)
,

then Edl x. y ) > 0

note Bc
,

n Body) = Of



Istloontable: given x e X
,

then I Byam } ! can easily be

checked to be a nbhd basis
exercise : Check 2) and 3)

L#

C. Continuous Functions

let Hi 7) and ( Y, 7
') be two topological spaces

a function
f :X → Y

is continuous if f-
'

fu ) is an open set if X for all open sets U in Y

← this means { x EX : f Cx ) EU }

exercise : You can easily check

f : IR
"

→ IR
"

is continuous

so continuity generalizes I using standard metric topologies)
what you know from ⇒

analysis He > o and x EIR
"

,
IS > O such that

d I x. y) c 8 ⇒ dffcxl ,
fly )) c E

Tha 7

for a function fix → Y the following are equivalent
. ) f is continuous

2) f -  ' I C ) is closed in X for all closed C in Y

3) for any A C X
,

HATE HAT

Proof : 1) ⇒ 2) .

-

We first note that for any ACY : f
- ' I Y - A) = X - f

-  '

(A)

indeed : E : x E f
-  ' I Y - A) ⇒ fix ) E Y - A

,
so text EA

: .
x I f - ' CA) and so x E X - f

-  '

(A)

Z : x E X ??
,

-  ' (A) ⇒ x & f
-

YA) so HHEt A

- Cx) C- Y - A
,

thus x Et
-

YY - AL



now if f- is continuous and C c Y is closed

then Y- C is open and thus f - '

( Y - C) = X - f -

Yc) is open

hence f-  ' ( C ) closed : 2) is true

2¥ is same argument
3 )⇒ let C be closed in Y

Set A  = f - Yc) by 3) deft of A

- ←
it x EA

,
then fat E HATEFCA ) = fff - ya ) E E = C

T
C-

⇒ : sin ::#
" " " " " " " .

I 't p EA
,

then Hp ) E f (A) c FTA) ✓

if p EA
,

then p is a limit point of A

it f Ip) E f CA) then done so assume f Ip ) Et f (A)

Claim : fcp) is a limit point of HA )

( : .  f- Ip ) C- FIAT and done )

to see this suppose f Ip) not a limit point of FIA )

thus F an open set U in Y set
. fcp ) EU

and Un f CA ) = 0

we know f-  ' ( u )isopen in X I since f cont
.

)

and p c- f -I cu )
← hopefully obvious

* f- ' I An B) = f -

YAI a f
-  '

CB) also f -  '

I u ) n A E f
- '

( u ) n f
- ' IHAD

E : obvious since An BCA
= f

- '

( U n f ( A )) = f
- '

( 0 ) = 0
*

so p is not a limit point of A * choice of p÷÷÷÷÷i÷÷÷÷
. . . . . . . . .

⇒



Tha 8 :

If X is 1st countable

Then f :X → Y is continuous

⇒

for each sequence pn → p in X

we have flpn ) → fcp ) in Y

Proof . ⇐ ) let pn
- sp in X

let U be an open set in Y such that Hp ) EU

then f-
'

to) open in X and p e f
-

Yu)

so IN such that n ? N ⇒ pne f
- '
( u )

:
.

f- I pn ) E f ( f
-  "

( u ) ) c U It n z N

ie
. fcpn ) → Hp ) note : this implication

does not need 1st count .

⇐ ) let A be a set in X

We show f CAT c FTA) then done by Th 17

so take p EA

it p EA
,

then f Ip) C- HA ) c FTA) V

it pet A
,

then p a limit pt of A

so by lemma 5 I a sequence {pn ) in A

St
. put p

now ftp.t → Hp ) is Y and IfCpn ) ) a sequence in f LA)

:
. lemma 3 ⇒ Ap ) EFTA )

so HA ) EFTA ) E#

examples of continuous maps

1) it yo EY a point ,
then the const

mapf:X → Y : x to Yo

is continuous
,

since for any open set Uc Y

t -

401--19 PIET isopen in X



2) if A a subspace of X
,

then the Inclusion
mapj

: A  → X : x tox

is continuous
,

since for any open set U CX

i
- ' I U ) = UNA is open in A

3) if f : X -7 Y is Antinous and Ac X has the subspace topology,

then the restriction

f la : A  → X

is continuous
,

since for any open Vc Y

Hla )
"

IV) = f
-  ' tu ) n A is open in A

4) pyjamas are continuous

x. : Xx Y → X : ( x. y ) tix ( Xxi has the

since for any open set U in ×
product topology )

IT
,

-

Yu ) = Ux Y is open in Xx Y

similarly for
y

.

.
Xx Y → Y : Cx

, y ) MY

5) compositions of continuous maps are continuous

f- :X -7 Y
, g

: Y → Z

g of :X → Z : x t g Cfc xD

since if U is open in Z
,

then §of )
- '

ful = f-
 '

Ig
-  ' ND

and g
- Yu) open in Y so f-

 '

Ig
-  ' tu ) ) open in X

b) F : Z  → Xx Y : z AHH, get ) is continuous

⇒

f- : Z  → X and g : Z  → Y are continuous

indeed : # ) follows since f = T
,

o F and g
=

 Tho F I by 41,5 ))
⇐ I exercise



Tha 9 .

let IX. 9) be a topological space and X - Au B with

A and B closed sets inX
It D f : A -2 Y and g : B → Y are continuous and

2) Hx ) = g I x ) for all xe An B

Then there is a unique continuous map

h :X → Y

such that Vx EA
,

h txt fix ) and Fx e B
,

had =

g Cx )

Proof .

define h :X → y : × ,→ { fix ) x e A

g-I x ) x E B

by 2)
,

h is clearly well - defined

we show h
- ' (c) closed for any closed C in Y I then h continuous

by Th ' 7)
Claim : h

-  ' (c) = f
- ' (c) u g

- ' (c)

PI :(E ) x eh
-  '

Ld c X

so x e A or x E B
, say x EA ( other case similar )

so h I x ) = f Cx ) : fix ) EC and x E f
- '(c) c f

- '(c) u g

F) x e f
- '

(c)
u g-

' (c)

suppose x e f
- ' K ) I other case similar )

so X EA and h CH - HH E C so x e f
' ' ( Er

f-
,G continuous ⇒ f-  ' (c) closed in A and

g-
' Cc ) closed in B

exercise . Since A and B are closed in X
,

show f-
' '

CC ) and

g-
' I c ) are closed in X

: . h
-  ' I c) = f

-

Yc ) u g
- ' Cc ) is closed in X ( by lemma 2)

L#



a function f :X→ Y is a homeomorphism if f- is a continuous

bijection and the inverse function f
-  '

: Y → X is also

continuous

This isthe natural equivalence
between topological spaces

we say X and Y are homeomorphic if there is a homeomorphism
from one to the other

note . all questions about continuity , convergence ,
and the like

are exactlythesame in homeomorphic spaces

so from the perspective of topology, you should think of

homeomorphic spaces as the same

examples .

1) let X -
- IR

'
- 110,0) ) with the subspace topology

Y -
- S

'

x IR with the product topology
( s

'

gets subspace topology from IR
'

where s
'

= { ( a. b ) :

ah
b ? I }

Claire : X and Y are homeomorphic

"
" "

→

f
- I

so while X and Y
"

look
"

different

they are really the same ! ( topologically )

f- ( I a
,
b)

,
z ) = Leta

,
et b)

g I x. y ) =

in Fit )
→

on unit circle It - defined since x' e  y
'

> o



note :  t of
- '

C x. yt ( e
" FEE

,
eh ¥⇒ )

= ( x , y )

f- ' of Hard
, H - %EE.bg#y ,

InFEI )
✓ I I

u 1
I

= l la . b)
,

Z )

so f is a bijection with inverse f
- '

from calculus we know Nx IR → IR : Hey ,
Htt xe

't

is continuous
,

so restricting to S
'

x IR

also continuous

similarly for Hey , z ) t yet

so f- is continuous since its component functions are
.

you can similarly use calculus to see f- '
is continuous

so f is a homeomorphism !

2) let X = I - I
, I ] x I - I

,
I ] = { I x , y ) E IR '

: txt El
, ly I E I }

Y = D
'

= { Cx , y ) I x 't  y
' E I }

Clavin : X and Y are homeomorphic
I so topology doesn't "

see
"

corners )

X f Y
111 11,

T

1/4/11,

11, 111 → I I I , 141
f - I

there is a continuous function g : S
'

→ Co ,
x )

such that got gives lengthy, *



indeed

geo , = flash
' '

,

te EE
.

ul IT ]

Is in 01 a c- L It ,
Jul

,
I

exercise . g is continuous I use Th ' 9)

now f- trio ) = I g lot r
,

t ) ( polar coordinates )

f- '
Ir

,
it ) = ( gtfo,

r
,

t )

clearly f a bijection with inverse f "

and f and f
- I

are continuous ( why ? )

Remark . It is very important in the definition of homeomorphism
that  t

- '
is continuous

example .

go;D I ,
t , Ds

'

f :X → Y : t 1-7 ( cos 2kt
, sin 2T t )

it we think of f- as a map X → IR
'

it is easy to see

from calculus that f is continuous

this implies f :X → Y is continuous

I since U open in Y means F V open in IN
'

such that U = s
'

n V

and f-
'
I u ) = f

- '

( s
' nd = f-

 '

I x) open in X )

so f- is a continuous bijection ,
but we don't want

to think of the interval and s
'

as the same !

luckily they an n 't because

Claim : f
- '

is not continuous

indeed let pn= f C I - I ) p.
.

÷
.
. p

this is a sequence I pn ) ins
'

.
is "

and pn → p = Ii , o ) in St
P '



but f-
 '

I p ) -

- o

f-  '
Cp ) f -  '

Ip . )
-  I

so f-
 '

(Pr ) does not converge to f- Ip )

: . f-
- '

is not continuous

an injective continuous map f :X → Y is called an embedding

iff :X → fix ) is a homeomorphism where f ( X) CY has

the subspace topology
so if we have an embedding X → Y then we may think of X as

a subspace of Y

example if A c X is a subspace ,
then the inclusion map 2 : A  → X

is an embedding
knots give interesting embeddings of s

'
in IR

'


